
Table of Contents

Chapter Name Page

1 Using the Assembler 1
2 Registers and Addressing Modes 7
3 Instructions 15

Appendix Error Messages 33

 Yerk Assembler 1

Chapter 1
Using the Assembler

About this Chapter
With the Yerk Assembler module you can write colon definitions and method definitions in
assembly code and you can also reference Yerk data and executable words. This chapter explains
how the assembler interfaces with Yerk. The Macintosh uses a Motorola 68000 microprocessor
and the assembler syntax is based on standard 68000 assembly language. This chapter is not a
tutorial and assumes a basic knowledge of 68000 assembly programming. Among the good books
on 68000 assembly are MC68000 16-bit Microprocessor User's Manual published by
Motorola and 68000 Assembly Language Programming by Gerry Kane, Doug Hawkins
& Lance Leventhal and published by Osborne/McGraw-Hill.

Getting Started
Included on your diskette is the assembler module (ASMMOD.BIN), two text files - AsmCodes
and Operands, assembler source files, floating point source files, and some demonstration files.

To use the assembler put ASMMOD.BIN, AsmCodes, and Operands with your other modules. The
text files AsmCodes and Operands are used by the assembler during compilation and need to be
present while assembling. The assembler and its two text files are not needed at run time. The
Yerk Assembler may not be distributed with sealed applications. On the first use of the assembler
after a dictionary comes up, there will be a longer than usual wait because AsmCodes and
Operands will be loading.

Like most assemblers, the Yerk Assembler is a two pass assembler. It does not run interactively.
Assembly code must be in a source file. The normal Yerk "//" load command will load and
assemble it.

Due to size limitations you cannot use the Yerk Assembler on a 128K Macintosh.

Recompiling the Assembler
The assembler comes compiled but if you wish to recompile it then move the assembler source
files, Lbug, String, 2dArray, and Dictionary onto the working disk and bring up yerk.com or
yerkFP.com and enter:

module asmmod
 Yerk Assembler 2

Recompiling Floating Point
With the assembler you can recompile the floating point of Yerk. You need the then floating point
source files and FrontEnd to do it. To recompile floating point bring up yerk.com and enter:

// fp.ld

 Yerk Assembler 3

then do a "Save dictionary As…" with a new dictionary name.

Assembler Colon Definitions
To write a colon definition with the assembler, just use ":code" for ":" and ";code" for ";". The
name of the new word follows the ":code" on the same line. This example and the other examples
give the code from the demo file and the screen commands after the file is loaded.

Example: (from file Demo1)

:code demo1 \ adds two numbers and puts the sum onto the stack
move.l #4,D0 \ puts 4 into register D0
add.l #8,D0 \ adds 8 to register D0
move.l D0,-(SP) \ pushes contents of register D0 onto data stack

;code

0->demo1
1->. cr
12

Assembler Method Definitions
To write a method definition with the assembler, just use ":mcode" for ":m" and ";mcode" for ";m".
The name of the new selector follows the ":mcode" on the same line. In the following example,
the "put:" and the "asmput:" of class demo2 are synonymous, as are the "get:" and the "asmget:".
See Chapter 2 for more information on addressing modes and Yerk's usage of registers.

Example: (from file Demo2)

class demo2 <super object
 var int1

 :M put: put: int1 ;M
 :M get: get: int1 ;M

 :MCODE asmget:
 move.l 0(A3,A2.l),-(A7)
 ;MCODE

 :MCODE asmput:
 move.l (A7)+,0(A3,A2.l)
 ;MCODE
;class

 Yerk Assembler 4

demo2 test2

0->26 put: test2
0->asmget: test2 . cr
26
0->34 asmput: test2
0->get: test2 . cr
34

 Yerk Assembler 5

Calling Yerk objects
There is a special operand in the Yerk Assembler that finds the relative address of an object. Its
syntax is "YERK[objname]". The following example shows how a Yerk defined object can be
accessed by the assembler. The relative address of the object (fun) is placed in D7. It is a
convention, but not required, to use D7 for relative addresses of objects. The address is relative to
the base of Yerk which is in A3. In the example the absolute address of the var "fun" is D7 plus
A3. Addressing in the assembler is absolute while in Yerk addressing is relative to A3. This
example also shows how an assembler defined word (demo3) can be accessed in Yerk just like a
colon definition.

Example: (from file Demo3)

var fun

:code demo3 \ put a 10 in the Yerk var fun
 move.l YERK[fun],D7
 move.l #10,0(A3,D7.l)
;code

: test3
 0 put: fun
 demo3
 get: fun . cr
;

0->test3
10

The following example shows an array being accessed with YERK[objname]. Five long words of
data starting at the absolute address of the array "edmund" plus 4 is moved to five registers. The
contents of the five registers are then pushed onto the stack. The displacement of 4 is necessary
because the first 4 bytes of an array are for record keeping.

Example: (from file Demo4)

5 array edmund

:code demo4
 move.l YERK[edmund],D7
 movem 4(A3,D7.l),d0-d1/a0-a2
 move.l d0,-(sp)

 Yerk Assembler 6

 move.l d1,-(sp)
 move.l a0,-(sp)
 move.l a1,-(sp)
 move.l a2,-(sp)
;code

: test4
 7 fill: edmund
 demo4

 Yerk Assembler 7

 cr
;

0->test4
7 7 7 7 7

Executing Yerk defined Words
Words defined with ":code" become Yerk primitives, i.e. words that contains executable code,
rather than addresses of other words. Words in the nucleus are also Yerk primitives. To determine
whether a word is a primitive do the following:

'code word colcode =

A true is returned for a secondary (colon definition) and a false otherwise.

The next example shows the calling of a primitive. This is done by executing a "JMP" to the
absolute address of the word. After the called word (dup) executes, it will return to the word
(test5) that called the ":code" word.

Example of calling primitive: (from file Demo5)

:code demo5
 move #55,-(A7)
 move Yerk[dup],D7
 jmp 0(A3,D7.L)
;code

: test5
 demo5
 . . cr
;

0->test5
55 55

The next example shows the calling of a secondary. After the called word (not) executes, it will
return to the word (test6) that called the ":code".

Example of calling a secondary word: (from file Demo6)

:code demo6 \ places a number on the stack and "not"'s it
 move #66,-(A7)

 Yerk Assembler 8

 move Yerk[not],D7
 move 0(A3,D7.L),D6
 jmp 0(A3,D6.L)
;code

: test6
 demo6
 . cr
;

 Yerk Assembler 9

0->test6
0

To write assembler subroutines that can be called by other assembler routines, terminate them with
an "RTS" instruction and call them with a "JSR". Note that assembler subroutines terminated by a
"RTS" will not work if called by a regular colon definition. Floating point source file fltMem has
many examples of this.

Example of calling an assembler defined word: (from file Demo7)

:code demi
 move.l #2,D0
 rts
;code

:code demo7
 move.l #3,-(SP)
 move.l YERK[demi],D7
 jsr 0(A3,D7.l)
 move.l D0,-(SP)
 move.l #1,-(SP)
;code

: test7
 demo7
 . . . cr
;

0->test7
1 2 3

Toolbox calls
The Yerk Assembler simplifies doing register based toolbox calls. To do a toolbox call, have the
needed parameters in the proper locations (registers or the data stack), use "call" as the opcode and
the toolbox name as the operand. There are many examples of toolbox calls in the floating point
code. Details on toolbox calling can be found in your Yerk manual and in Inside Mac. The
following example tests two strings to find if they are equal. Inside Mac describes which
parameters go into which registers.

Example: (from file Demo8)

 Yerk Assembler 10

:code demo8 \ tests two "addr len" strings for being equal
 move.l (SP)+,D0 \ pop len of first string
 swapD0 \ onto high order word of D0
 movea.l (SP)+,A0 \ pop addr of first string
 adda.l A3,A0 \ make address absolute
 or.l (SP)+,D0 \ pop len of second string onto low order word of D0

 Yerk Assembler 11

 movea.l (SP)+,A1 \ pop addr of second string
 adda.l A3,A1 \ make address absolute
 call cmpstring \ IF equal THEN returns 0 ELSE 1
 move.l D0,-(SP) \ push answer onto stack
;code

: test8
 " Yerk"
 " Assembler"
 demo8
 . cr
;

0->test8
1

Syntax
The Yerk Assembler uses a standard syntax. In Yerk parentheses denote comments, but not in the
assembler. The assembler supports "\" and ";" as the start of a comment.

A label may not have the same spelling as an opcode and an opcode can start in the first column if
there is no label. Labels do not have to start in column one. After the opcode you may define the
operand size as byte, word, or long word.

Example: MOVE.B
MOVE.W
MOVE.L

The Yerk Assembler's default is long word because Yerk's stacks have long word sized elements.
Most 68000 assemblers use word as the default.

The Yerk Assembler is case insensitive.

 Yerk Assembler 12

Chapter 2
Registers and Addressing Modes

About this Chapter
This chapter describes the registers which you can work with and the addressing modes that can be
used on operands.

Registers
There are 18 registers that you should concern yourself with: the 8 data registers, the 8 address
registers, the program counter and the status register. They are each 32 bits in size with the
exception of the status register, which is 16 bits. They are numbered with 0 as the right most bit.
See Figure 1 for a chart of all 18 registers. Whenever a long word is referenced, all 32 bits are
being referenced. With a word sized operand the low order 16 bits are intended. The low order 8
bits are used in a byte reference.

Data Registers
The 8 data registers (D0 - D7) are each 32 bits wide and are primarily used to hold 32 bit (long
word) data, 16 bit (word) data, and 8 bit (byte) data. They can also be used for indexing.

Address Registers
The first 7 address registers (A0 - A6) are 32 bits wide and are used to hold addresses although
they can also be used for indexing. For addressing references the low order 24 bits are used.

A7 is the stack pointer (SP). When the system is in supervisor mode, it is the supervisor stack
pointer, and in user mode it is the user stack pointer. The Macintosh operates in supervisor mode.

Uses of Data and Address Registers
Some of the 68000's registers are used by Yerk and the Macintosh for themselves. See Figure 2 for
a memory map of the Macintosh while Yerk is running.

 Yerk Assembler 13

 Yerk Assembler 14

Figure 1 - Registers

 Yerk Assembler 15

 Yerk Assembler 16

Figure 2 - Memory Map

 Yerk Assembler 17

You may safely manipulate in a ":code" or a ":mcode" definition most registers (A0, A1, A2, D0,
D1, D2, D3, D4, D6, D7) without danger. However, the data in these registers may change if your
program exits the definition. A2 is set to the address of the fist ivar of the given object at the
beginning of a ":mcode" definition. This is just for convenience; you can use A2 for other
purposes if you wish. The assignments of each register are:

A0 Free
A1 Free
A2 Free (address of first ivar in an object at the start of a ":mcode")
A3 Kernel base pointer
A4 Instruction pointer
A5 Pointer to base of QuickDraw Globals
A6 Return stack pointer
A7 Data stack pointer (in supervisor mode)

D0 Free
D1 Free
D2 Free
D3 Free
D4 Free
D5 Methods stack pointer
D6 Free
D7 Free

Condition Codes
There are five condition codes used by the Yerk Assembler and most instructions affect at least one
of them. Bits 0 through 4 are the condition codes and they are the only bits on the user byte that
are used. See chapter 3 for which instructions affect which condition codes. They are used for
various tests for conditional branching and setting bytes. The codes are:

Code Name Bit Location Description

X eXtend 4 Used for multiprecision
computations. If affected then usually set as the
C code is set.

N Negative 3 On if most significant bit
of result is on, otherwise off.

Z Zero 2 On if result is zero,
otherwise off.

V oVerflow 1 On if there is an
arithmetic overflow, otherwise off. If on the

 Yerk Assembler 18

result is probably wrong.
C Carry 0 On if a carry is generated

by the most significant digit in an addition, or a
borrow is generated by the most significant digit
in a subtraction, otherwise off.

Interrupt Mask
The interrupt mask is used to disable interrupts at various levels. It occupies bits 8, 9, and 10 of
the status register. Interrupt levels range from 1 (001) to 7 (111). Bit 8 is the low bit, 1.e., for
interrupt level 1 bit 8 is set and bits 9 and 10 are not set. If the interrupt priority of

 Yerk Assembler 19

an interrupt is less than or equal to the interrupt mask, then the interrupt exception is postponed.
An interrupt level of 7 (111) will not be postponed by the interrupt mask even if the mask is 7
(111). Problems like loss of power are level 7 (111). A mask of 0 (000) means no interrupts are
postponed. 0 (000) is the default for the interrupt mask.

Supervisor Bit
If the supervisor bit is on then Yerk is in supervisor mode and if the supervisor bit is off, then Yerk
is in user mode. The default is for the bit to be on. This bit (13) affects register A7. A few
instructions, which are not usable in user mode, are known as privileged instructions.

Trace Bit
If bit 15 is on then the trace facility is on. After every instruction while bit 15 is on there will be a
dump of registers.

Data Addressing Modes

Mode Operand Syntax

Data Register Direct Dx
Address Register Direct Ax
Other Register Direct CCR, SR, USP, <register list>
Address Register Indirect (Ax)
Address Register Indirect with PostIncrement (Ax)+
Address Register Indirect with PreDecrement -(Ax)
Address Register Indirect with Displacement d(Ax)
Address Register Indirect with Displacement and Index d(Ax,Ry)
Program Counter Indirect with Displacement d(PC)
Program Counter Indirect with Displacement and Index d(PC,Ry)
Absolute Short Address #xx
Absolute Long Address #xxxx
Immediate Data #<data>
Implicit Reference NA

Notes:

NA not applicable
() indirect
-() predecrement indirect
()+ postincrement indirect
d displacement

 Yerk Assembler 20

Ax address register
Dx data register
Ry address register or data register
CCR user byte of status register
SR status register
USP user stack pointer
<register list> group of registers
PC program counter
#xx word sized immediate address
#xxxx long word sized immediate address

 Yerk Assembler 21

#<data> immediate data

Table 1

Addressing Modes
The 68000 has a rich set of addressing modes. An effective address is the address computed at
execution time using the addressing mode. The contents of the effective address are what the
operation works on. If the operand has the size of a byte, an address, even or odd, may be
accessed. If the operand size is word or long word, only even addresses maybe accessed.

Data Register Direct
The operand is a data register.

Example: MOVE D0,D1

Address Register Direct

Example: MOVEA D0,A1

Other Register Direct
With the MOVE instruction, the operands can be CCR (user byte of the status register, i.e.
condition codes), SR (status register), or USP (user stack pointer while in supervisor mode). See
Chapter 3 for more details on the MOVE instruction. One of the two operands of the MOVEM
instruction is a list of registers. The registers should be listed in the order: D0 thru D7, A0 thru A7.
Note D0/D2 loads D0 and D2; D0-D2 loads D0, D1, and D2. A "-" can only be used to group D
registers or A registers but it cannot group D and A registers together.

Examples: MOVE D0,SR
MOVEM 4(A3,D7.L(,D6-D7/A0-A2

Address Register Indirect
The effective address is the content of the address register.

Example: NEG (A0)

Address Register Indirect with PostIncrement
The effective address is the content of the address register. After the operand is computed the
register is incremented by 1, 2, or 4 depending on the operand size. If A7 is used and the operand
size is byte then the operand is still byte but the increment is 2. If another address register is used
with an operand size of a byte then the increment is 1.

Example: CLR (A6)+
 Yerk Assembler 22

Address Register Indirect with PreDecrement
Before the operand is computed the address register is decremented by 1, 2, or 4 depending on the
operand size. The effective address is the content of the register after decrementation. If A7 is
used and the operand size is byte, then the operand is still byte but the decrement is 2. If another
address register is used with an operand size of a byte then the decrement is 1.

Example: CLR -(A6)

 Yerk Assembler 23

Address Register Indirect with Displacement
The effective address is the sum of the content of the address register and the 16 bit two's
complement integer. Hex data for all displacements can be specified using a "$".

Examples: CLR 4(SP)
CLR $4(SP)
CLR $-4(SP)

Address Register Indirect with Displacement and Index
The effective address is the sum of the content of the address register, the 16 bit two's complement
integer, and the index register. The index register can be a data or an address register and it can be
a word or a long word in size.

Example: LEA 4(A0,D1.L),A1

Program Counter Indirect with Displacement
The effective address is the sum of the content of the program counter and the 16 bit two's
complement integer.

Example: CLR 4(PC)

Program Counter Indirect with Displacement and Index
The effective address is the sum of the content of the program counter, the 16 bit two's
complement integer, and the index register. The index register can be a data or an address register
and it can be a word or a long word in size.

Example: LEA 4(PC,D1.L),A1

Absolute Short Address
The effective address is specified absolutely. The address can no be larger than 16 bits.

Absolute Long Address
The effective address is specified absolutely. The address is larger than 16 bits.

Immediate Data
The data is specified absolutely. The maximum size depends on the opcode. Hex data can be
specified using a "$".

Examples: MOVE #6,D0
MOVE #-6,D0
MOVE #$6,D0
MOVE #$-6,D0

 Yerk Assembler 24

Implicit Reference
The operands needed are known by the opcode. No operands are given.

Example: RTS

 Yerk Assembler 25

Chapter 3
Instructions

About this Chapter
This chapter explains the machine instructions for the Yerk assembler module. The machine
instructions are based on the standard 68000 instruction set syntax. The two significant differences
are: 1) you can call the addresses of Yerk objects as described in chapter 2, and 2) the default
operand size is L (long word). There is a table of all the machine instructions and another of the
condition fields for instructions Bcc, DBcc, and Scc. Following the tables are written descriptions
of each instruction giving details which the tables do not cover.

 Yerk Assembler 26

ABCD add decimal with extend B Dy,Dx A ?
D ? M

-(Ay),-(Ax)

ADD add binary B W L <ea>,Dx A B C F K
Dx,<ea>

ADDA add address W L <ea>,Ax - - - - -

ADDI add immediate B W L #<data>,<ea> A B C F K

ADDQ add quick B W L #<data>,<ea> A B C F K

ADDX add extended B W L Dy,Dx A B C F K
-(Ay),-(Ax)

AND AND logical B W L <ea>,Dx - B C 0 0
Dx,<ea>

ANDI AND immediate B W L #<data>,<ea> - B C 0 0

ASL arithmetic shift left B W L Dx,Dy (r=0) - B C 0 0
#<data>,Dy (r<>0) A B C J P
<ea>

ASR arithmetic shift right B W L Dx,Dy (r=0) - B C 0 0
#<data>,Dy (r<>0) A B C 0 R
<ea>

Bcc branch conditionally B W <label> - - - - -

BCHG test a bit and change B L Dx,<ea> - - E - -
#<data>,<ea>

BCLR test a bit and clear B L Dx,<ea> - - E - -
#<data>,<ea>

BRA branch always B W <label> - - - - -

BSET test a bit and set B L Dx,<ea> - - E - -
#<data>,<ea>

BSR branch to subroutine B W <label> - - - - -

BTST test a bit B L Dx,<ea> - - E - -
#<data>,<ea>

CHK check register against W <ea>,Dx - V ? ? ?
 bounds

 Yerk Assembler 27

CLR clear an operand B W L <ea> - 0 1 0 0

CMP arithmetic compare B W L <ea>,Dx - B C G L

 Yerk Assembler 28

CMPA arithmetic compare W L <ea>,Ax - B C G L
 address

CMPI compare immediate B W L #<data>,<ea> - B C G L

CMPM compare memory B W L (Ay)+,(Ax)+ - B C G L

DBcc test condition, W Dx,<label> - - - - -
 decrement and branch

DIVS signed divide W <ea>,Dx - B C H 0

DIVU unsigned divide W <ea>,Dx - B C H 0

EOR exclusive OR logical B W L Dx,<ea> - B C 0 0

EORI exclusive OR immediate B W L #<data>,<ea> - B C 0 0

EXG exchange registers L Rx,Ry - - - - -

EXT sign extend W L Dx - B C 0 0

JMP jump NA <ea> - - - - -

JSR jump to subroutine NA <ea> - - - - -

LEA load effective address L <ea>,Ax - - - - -

LINK link and allocate NA Ax,#<displacement> - - - - -

LSL logical shift left B W L Dx,Dy (r=0) - B C 0 0
#<data>,Dy (r<>0) A B C 0 P
<ea>

LSR logical shift right B W L Dx,Dy (r=0) - B C 0 0
#<data>,Dy (r<>0) A B C 0 R
<ea>

MOVE move data from source B W L <ea>,<ea> - B C 0 0
 to destination

MOVE move to condition codes W <ea>,CCR S S S S S
to CCR

MOVE move to the status W <ea>,SR S S S S S
to SR register

 Yerk Assembler 29

MOVE move from the status W SR,<ea> - - - - -
from SR register

 Yerk Assembler 30

MOVE move user stack pointer L USP,Ax - - - - -
USP Ax,USP

MOVEA move address W L <ea>,Ax - - - - -

MOVEM move multiple registers W L <register list>,<ea> - - - - -
<ea>,<register list>

MOVEP move peripheral data W L Dx,d(Ay) - - - - -
d(Ay),Dx

MOVEQ move quick L #<data>,Dx - B C 0 0

MULS signed multiply W <ea>,Dx - B C 0 0

MULU unsigned multiply W <ea>,Dx - B C 0 0

NBCD negate decimal with B <ea> A ? D ? N
 extend

NEG two's complement B W L <ea> A B C I O
 negation

NEGX negate with extend B W L <ea> A B C I O

NOP no operation NA NA - - - - -

NOT logical complement B W L <ea> - B C 0 0

OR inclusive OR logical B W L <ea>,Dx - B C 0 0
Dx,<ea>

ORI inclusive OR immediate B W L #<data>,<ea> - B C 0 0

PEA push effective address L <ea> - - - - -

RESET reset external devices NA NA - - - - -

ROL rotate without extend B W L Dx,Dy (r=0) - B C 0 0
 left #<data>,Dy (r<>0) - B C 0 P

<ea>

ROR rotate without extend B W L Dx,Dy (r=0) - B C 0 0
 right #<data>,Dy (r<>0) - B C 0 R

<ea>

ROXL rotate with extend left B W L Dx,Dy (r=0) - B C 0 Q
#<data>,Dy (r<>0) A B C 0 P
<ea>

 Yerk Assembler 31

ROXR rotate with extend right B W L Dx,Dy (r=0) - B C 0 Q
#<data>,Dy (r<>0) A B C 0 R
<ea>

RTE return from exception NA NA T T T T T

RTR return and restore NA NA T T T T T
 condition codes

RTS return from subroutine NA NA - - - - -

SBCD subtract decimal with B Dy,Dx A ? D ? N
 extend -(Ay),-(Ax)

Scc set according to condition B <ea> - - - -
-

STOP stop program execution NA #<data> U U U U U

SUB subtract binary B W L <ea>,Dx A B C G L
Dx,<ea>

SUBA subtract address W L <ea>,Ax - - - - -

SUBI subtract immediate B W L #<data>,<ea> A B C G L

SUBQ subtract quick B W L #<data>,<ea> A B C G L

SUBX subtract with extend B W L Dy,Dx A B D G L
-(Ay),-(Ax)

SWAP swap register halves W Dx - B C 0 0

TAS test and set an operand B <ea> - B C 0 0

TRAP trap NA #<vector> - - - - -

TRAPV trap on overflow NA NA - - - - -

TST test an operand B W L <ea> - B C 0 0

UNLK unlink NA Ax - - - - -

 Yerk Assembler 32

Notes (other than for condition codes):

B byte sized operand
W word sized operand
L long word operand
NA not applicable
<ea> effective address
#<data> immediate data (size depends on instruction)
#<vector> 0 - 15
#<displacement> 16 bit two's complement integer
#<register list> registers to be moved
<label> user defined label
() indirect
-() predecrement indirect
()+ postincrement indirect
d(Ax) address register with displacement
Ax,Ay address register
Dx,Dy data register
Rx,Ry address register or data register
CCR condition code byte of status register
SR status register
USP user stack pointer

 Yerk Assembler 33

Condition codes:
N Negative
Z Zero
V Overflow
C Carry
X Extend

Notes on condition codes:
? Undefined after operation
- Unaffected by the operation
1 Set
0 Cleared
A X <- C
B N <- Rm
C Z <- ~Rm * … * ~R0
D Z <- Z * ~Rm * … * ~R0
E Z <- ~Rm
F V <- Sm * Dm * ~Rm + ~Sm * ~Dm * Rm
G V <- ~Sm * Dm * ~Rm + Sm * ~Dm * Rm
H V <- Division Overflow
I V <- Dm * Rm
J V <- Dm * (~Dm-1 + … + ~Dm-r)

+ ~Dm * (Dm-1 + … + Dm-r)
K C <- Sm * Dm + ~Rm * Dm + Sm * ~Rm
L C <- Sm * ~Dm + Rm * ~Dm + Sm * Rm
M C <- Decimal Carry
N C <- Decimal Borrow
O C <- Dm + Rm
P C <- Dm-r+1
Q C <- X
R C <- Dr-1
S Set according to source operand
T Set according to contents of word on the stack
U Set according to immediate operand
V Set if Dx <0, Clear if Dx > <ea>

otherwise undefined

Notes on notes on condition codes:
Sm most significant bit of source operand before operation
Dm most significant bit of destination operand before operation
Rm most significant bit of result after operation

 Yerk Assembler 34

r shift amount
n bit number

 Yerk Assembler 35

Condition fields

(Use for test code cc in Bcc, DBcc, and Scc)

Test Code Operation Test to Return True

CC carry clear ~C
CS carry set C
EQ equal Z
F always false 0
GE greater than or equal N * V + ~N * ~V
GT greater than N * V * ~Z + ~V * ~V * ~Z
HI high ~C * ~Z
LE less than or equal Z + N * ~V + ~N * V
LS low or same C + Z
LT less than N * ~V + ~N * V
MI minus N
NE not equal ~Z
PL plus ~N
T always true 1
VC no overflow ~V
VS overflow V

Table 3

Shifts and Rotates

 Yerk Assembler 36

Figure 3

 Yerk Assembler 37

Machine Instructions Descriptions

ABCD Add Decimal with Extend
This instruction adds the contents of the two operands and the contents of the X bit together with
binary coded decimal arithmetic and places the result into the second operand.

ADD Add Binary
This instruction adds the contents of the two operands together with two's complement binary
arithmetic and places the result into the second operand.

ADDA Add Address
This instruction adds the contents of the two operands together with two's complement binary
arithmetic and places the result into the second operand.

ADDI Add Immediate
This instruction adds the contents of the two operands together with two's complement binary
arithmetic and places the result into the second operand. The immediate data can be up to 32 bits
long, depending on the operand size.

ADDQ Add Quick
This instruction adds the contents of the two operands together with two's complement binary
arithmetic and places the result into the second operand. The immediate data can be the integers 1
through 8.

ADDX Add Extended
This instruction adds the contents of the two operands and the X bit together with two's
complement binary arithmetic and places the result into the second operand.

AND AND Logical
This instruction performs a bitwise logical AND on the contents of the two operands and places the
result into the second operand.

ANDI AND Immediate
This instruction performs a bitwise logical AND on the contents of the two operands and places the
result into the second operand. The immediate data can be up to 32 bits long, depending on the
operand size. With byte or word operand size the second operand can be the status register. If
byte, then only the condition codes are affected. If word, then it is a privileged operation and the
whole status register is affected.

ASL Arithmetic Shift Left
If there are two operands, then this instruction arithmetically shifts to the left the contents of the
second operand by the amount specified in the first operand. If the first operand is a data register,

 Yerk Assembler 38

then the distance shifted is in the right most six bits of the first operand. If the first operand is
immediate data, then the immediate data can be the integers 1 to 8. If there is only one operand,
then the contents of the operand will be arithmetically shifted to the left only one bit and the
operand size is limited to word. Zeros are shifted into the low order bit and the last value shifted
out of the high order bit is placed into the C and X bits. See Figure 3. This instruction is identical
to LSL.

ASR Arithmetic Shift Right
If there are two operands, then this instruction arithmetically shifts to the right the contents of the
second operand by the amount specified in the first operand. If the first operand is a data

 Yerk Assembler 39

register, then the distance shifted is in the right most six bits of the first operand. If the first
operand is immediate data, then the immediate data can be the integers 1 to 8. If there is only one
operand, then the contents of the operand will be arithmetically shifted to the right only one bit and
the operand size is limited to word. The high order bit is duplicated with each shift of a bit and the
last value shifted out of the low order bit is placed into the C and X bits. See Figure 3.

Bcc Branch Conditionally
This instruction causes the program execution to continue at the user specified label if the
condition is met. The condition is specified by the cc which one of the codes in Table 3. Two
exceptions are F and T; those conditions codes re not supported in Bcc (BRA can be used).

BCHG Test a Bit and Change
This instruction complements a bit. The bit is in the contents of the second operand and the
location within the second operand is specified by the first operand. The second operand can be a
data register or a byte in memory. If it is a data register, then any one of the 32 bits in the register
can be complemented. The exact bit is specified by the first operand and the bits in the data
register are numbered from 1 to 32 and from right to left. If a byte of memory is used, then the bits
are numbered from 1 to 8. If the first operand is a data register and the second operand is a byte,
then the contents of the data register are modulo 8 for the duration of the instruction.

BCLR Test a Bit and Clear
This instruction clears a bit. The bit is in the contents of the second operand and the location
within the second operand is specified by the first operand. The second operand can be a data
register or a byte in memory. If it is a data register, then any one of the 32 bits in the register can
be cleared. The exact bit is specified by the first operand and the bits in the data register are
numbered from 1 to 32 and from right to left. If a byte of memory is used, then the bits are
numbered from 1 to 8. If the first operand is a data register and the second operand is a byte, then
the contents of the data register are modulo 8 for the duration of the instruction.

BRA Branch Always
This instruction causes the program execution to automatically branch to the user specified label.

BSET Test a Bit and Set
This instruction sets a bit. The bit is in the contents of the second operand and the location within
the second operand is specified by the first operand. The second operand can be a data register or
a byte in memory. If it is a data register, then any one of the 32 bits in the register can be set. The
exact bit is specified by the first operand and the bits in the data register are numbered from 1 to 32
and from right to left. If a byte of memory is used, then the bits are numbered from 1 to 8. If the
first operand is a data register and the second operand is a byte, then the contents of the data
register are modulo 8 for the duration of the instruction.

BSR Branch to Subroutine
This instruction pushes the contents of the Program Counter (PC) onto the data stack -(A7) and

 Yerk Assembler 40

then branches to the user specified label.

 Yerk Assembler 41

BTST Test a Bit
This instruction tests a bit. The bit is in the contents of the second operand and the location within
the second operand is specified by the first operand. The second operand can be a data register or
a byte in memory. If it is a data register, then any one of the 32 bits in the register can be tested.
The exact bit is specified by the first operand and the bits in the data register are numbered from 1
to 32 and from right to left. If a byte of memory is used, then the bits are numbered from 1 to 8. If
the first operand is a data register and the second operand is a byte, then the contents of the data
register are modulo 8 for the duration of the instruction.

CHK Check Register against Bounds
This instruction checks the lower half of the contents of the second operand and if it is greater than
the upper bound (found in the first operand) or less than 0, then the exception processing is
initiated and a TRAP is generated. The CHK instruction vector (vector #6) is used for the trap.

CLR Clear an Operand
This instruction clears the contents of the operand.

CMP Compare
This instruction subtracts the contents of the first operand from the contents of the second operand
but does not change the contents of either operand. Just condition codes are changed.

CMPA Compare Address
This instruction subtracts the contents of the first operand from the contents of the second operand
but does not change the contents of either operand. Just condition codes are changed.

CMPI Compare Immediate
This instruction subtracts the contents of the first operand from the contents of the second operand
but does not change the contents of either operand. Just condition codes are changed. The
maximum size of the immediate data is determined by the operand size.

CMPM Compare Memory
This instruction subtracts the contents of the first operand from the contents of the second operand
but does not change the contents of either operand. Just condition codes are changed.

DBcc Test Condition, Decrement and Branch
This instruction first checks to see if the condition is false. The condition is specified by the cc
which is one of the condition codes in Table 3. All 16 condition codes are usable. If the condition
is false, then the contents of the data register is decremented by 1. After the decrementation, if the
contents of the data register is -1 then the program execution branches to the user specified label.

DIVS Signed Divide
This instruction sign divides the contents of the second operand by the contents of the first operand

 Yerk Assembler 42

and places the results into the second operand. The first operand is 16 bits and the second operand
is 32 bits. The result is 32 bits with the quotient in the lower word and the remainder in the upper
word of the register. If the first operand is a 0, then a TRAP is

 Yerk Assembler 43

generated. The Zero Divide vector (vector #5) is used for the TRAP. If there is an overflow, then
the operands are unaffected.

DIVU Unsigned Divide
This instruction unsign divides the contents of the second operand by the contents of the first
operand and places the results into the second operand. The first operand is 16 bits and the second
operand is 32 bits. The result is 32 bits with the quotient in the lower word and the remainder in
the upper word of the register. If the first operand is a 0, then a TRAP is generated. The Zero
Divide vector (vector #5) is used for the TRAP. If there is an overflow, then the operands are
unaffected.

EOR Exclusive OR Logical
This instruction performs a bitwise logical exclusive OR on the contents of the two operands and
places the result into the second operand.

EORI Exclusive OR Immediate
This instruction performs a bitwise logical exclusive OR on the contents of the two operands and
places the result into the second operand. The immediate data can be up to 32 bits long, depending
on the operand size. With byte or word operand size, the second operand can be the status register.
If byte, then only the condition codes are affected. If word, then it is a privileged operation and the
whole status register is affected.

EXG Exchange registers
This instruction exchanges the contents of two registers. They can be both address registers, both
data registers, or an address register and a data register.

EXT Sign Extend
This instruction extends a byte sized number into a word sized number or a word sized number
into a long word sized number. If the operand size is word, then bit 7 is copied into bits 8 to 15
and if the operand size is long word, then bit 15 is copied into bits 16 to 31.

JMP Jump
This instruction causes the program execution to automatically branch to the address specified by
the contents of the operand.

JSR Jump to Subroutine
This instruction pushes the contents of the Program Counter (PC) onto the data stack -(A7) and
then branches to the address specified by the contents of the operand.

LEA Load Effective Address
This instruction places the contents of the first operand into the address register.

LINK Link and Allocate

 Yerk Assembler 44

This instruction pushes the contents of the address register onto the stack. Then the stack pointer is
put into the address register and finally the displacement is added to the stack pointer. This is used
with UNLK to handle nested subroutine calls.

LSL Logical Shift Left
If there are two operands, then this instruction logically shifts to the left the contents of the second
operand by the amount specified in the first operand. If the first operand is a data register, then the
distance shifted is in the right most six bits of the first operand. If the first operand is immediate
data, then the immediate data can be the integers 1 to 8. If there is only one operand, then the
contents of the operand will be logically shifted to the left only one bit

 Yerk Assembler 45

and the operand size is limited to word. Zeros are shifted into the low order bit and the last value
shifted out of the high order bit is placed into the C and X bits. See Figure 3. This instruction is
identical to ASL.

LSR Logical Shift Right
If there are two operands, then this instruction logically shifts to the right the contents of the
second operand by the amount specified in the first operand. If the first operand is a data register,
then the distance shifted is in the right most six bits of the first operand. If the first operand is
immediate data, then the immediate data can be the integers 1 to 8. If there is only one operand,
then the contents of the operand will be logically shifted to the right only one bit and the operand
size is limited to word. Zeros are shifted into the low order bit and the last value shifted out of the
high order bit is placed into the C and X bits. See Figure 3.

MOVE Move Data from Source to Destination
This instruction moves the contents of the first operand into the location specified by the second
operand.

MOVE to CCR Move to Condition Codes
This instruction moves the contents of the first operand into the low order byte of the status
register. The high order byte of the contents of the first operand is ignored. This is used to set the
condition codes. "To CCR" is not part of the opcode.

MOVE to SR Move to the Status Register
This instruction moves the contents of the first operand into the status register. This is used to set
the condition codes and other bits in the status register. This is a privileged instruction. "To SR" is
not part of the opcode.

MOVE from SR Move from the Status Register
This instruction moves the status register into the location specified by the second operand. "From
SR" is not part of the opcode.

MOVE USP Move User Stack Pointer
This instruction moves the user stack pointer into the location specified by the second operand or
moves the contents of the first operand into the user stack pointer. This is a privileged instruction.
"USP" is not part of the opcode.

MOVEA Move Address
This instruction moves the contents of the first operand into the address register.

MOVEM Move Multiple Registers
This instruction moves the contents of more than one register into memory or vice versa. If the
operand size is word, then the low order word is moved out of the registers or sign extended words
are moved into the registers. With one exception, the order of moving data in or out of memory is:

 Yerk Assembler 46

D0 to D7, A0 to A7. The one exception is when predecrement mode is used for the effective
address; then the order is A7 to A0, D0 to D7. In predecrement mode, movement can only be from
register to memory and in postincrement mode, movement can only be from memory to register.

MOVEP Move Peripheral Data
This instruction moves bytes in a register to alternating bytes in memory. The transfers start with
the high order byte of the register and end with the low order byte. The transferred bytes go onto
even addressed memory bytes. If the effective address is even and the operand size is long word,
then the resulting memory, starting at the effective address is 31-24

 Yerk Assembler 47

register byte, empty byte, 23-16 register byte, empty byte, 15-8 register byte, empty byte, 7-0
register byte, empty byte. The exact opposite can be done.

MOVEQ Move Quick
This instruction moves an 8 bit number into a data register.

MULS Signed Multiply
This instruction multiplies the contents of two word sized signed operands and leaves a long word
sized signed result in the second operand. The high order word of the second operand is ignored in
multiplying and is written over by the result.

MULU Unsigned Multiply
This instruction multiplies the contents of two word sized unsigned operands and leaves a long
word sized unsigned result in the second operand. The high order word of the second operand is
ignored in multiplying and is written over by the result.

NBCD Negate Decimal with Extend
This instruction negates a binary coded decimal number and uses the X bit to do it. The operation
is 0 minus the contents of the operand minus the X bit.

NEG Negate
This instruction negates a two's complement number and does not use the X bit to do it. The
operation is 0 minus the contents of the operand.

NEGX Negate with Extend
This instruction negates a two's complement number and uses the X bit to do it. The operation is 0
minus the contents of the operand minus the X bit.

NOP No Operation
This instruction does nothing except increment the program counter by two and take time.

NOT Logical Complement
This instruction performs a bitwise logical complement on the contents of the operand.

OR Inclusive OR Logical
This instruction performs a bitwise logical OR on the contents of the two operands and places the
result into the second operand.

ORI Inclusive OR Immediate
This instruction performs a bitwise logical OR on the contents of the two operands and places the
result into the second operand. The immediate data can be up to 32 bits long, depending on the
operand size. With byte or word operand size, the second operand can be the status register. If
byte, then only the condition codes are affected. If word, then it is a privileged operation and the

 Yerk Assembler 48

whole status register is affected.

PEA Push Effective Address
This instruction pushes the effective address onto the stack and postdecrements the stack pointer.

RESET Reset External Devices
This instruction resets the external devices. It is a privileged instruction.

 Yerk Assembler 49

ROL Rotate without Extend Left
If there are two operands, then this instruction rotates to the left the contents of the second operand
by the amount specified in the first operand. If the first operand is a data register, then the distance
shifted is in the right most six bits of the first operand. If the first operand is immediate data, then
the immediate data can be the integers 1 to 8. If there is only one operand, then the contents of the
operand will be rotated to the left only one bit and the operand size is limited to word. With each
rotate of a bit the high order bit is shifted out and into two places: the low order bit and the C bit.
See Figure 3.

ROR Rotate without Extend Right
If there are two operands, then this instruction rotates to the right the contents of the second
operand by the amount specified in the first operand. If the first operand is a data register, then the
distance shifted is in the right most six bits of the first operand. If the first operand is immediate
data, then the immediate data can be the integers 1 to 8. If there is only one operand, then the
contents of the operand will be rotated to the right only one bit and the operand size is limited to
word. With each rotate of a bit the high order bit is shifted out and into two places: the low order
bit and the C bit. See Figure 3.

ROXL Rotate with Extend Left
If there are two operands, then this instruction rotates to the left the contents of the second operand
by the amount specified in the first operand. If the first operand is a data register, then the distance
shifted is in the right most six bits of the first operand. If the first operand is immediate data, then
the immediate data can be the integers 1 to 8. If there is only one operand, then the contents of the
operand will be rotated to the left only one bit and the operand size is limited to word. With each
rotate of a bit the high order bit is shifted out and into three places: the low order bit, the X bit, and
the C bit. See Figure 3.

ROXR Rotate with Extend Right
If there are two operands, then this instruction rotates to the right the contents of the second
operand by the amount specified in the first operand. If the first operand is a data register, then the
distance shifted is in the right most six bits of the first operand. If the first operand is immediate
data, then the immediate data can be the integers 1 to 8. If there is only one operand, then the
contents of the operand will be rotated to the right only one bit and the operand size is limited to
word. With each rotate of a bit the high order bit is shifted out and into three places: the low order
bit, the X bit, and the C bit. See Figure 3.

RTE Return from Exception
This instruction is performed at the end of exception processing. It replaces the status register and
the program counter with the original status register and program counter that are on the supervisor
stack. They were put there by TRAP. This is a privileged instruction.

RTR Return and Restore Condition Codes
 Yerk Assembler 50

This instruction is performed at the end of a subroutine started by BSR or JMP. It replaces the
condition codes and the program counter with the original condition codes and program counter
that are on the stack. BRA and JMP do no put the condition codes onto the stack. If you want to
return with RTR, then immediately after the jump you must push the condition codes onto the
stack, i.e., MOVE SR, -(SP).

RTS Return from Subroutine
This instruction is the normal instruction to use at the end of a subroutine started by BSR or JMP.
It replaces the program counter with the original program counter that is on the stack.

 Yerk Assembler 51

SBCD Subtract Decimal with Extend
This instruction subtracts the contents of the first operand and the contents of the X bit from the
contents of the second operand with binary coded decimal arithmetic and places the result into the
second operand.

Scc Set According to Condition
This instruction causes the specified byte to be set if the condition is met. The condition is
specified by the cc which is one of the codes in Table 3.

STOP Stop Program Execution
This instruction places the immediate data into the status register and stops the microprocessor
from executing any more instructions. The immediate data is 16 bits. There are three ways to stop
the STOP and restart execution. A trace exception will happen immediately if the trace bit is on. If
an interrupt request occurs and it is of higher priority that that of the current processor priority,
then an interrupt exception occurs. A reset request will always execute. This is a privileged
instruction.

SUB Subtract Binary
This instruction subtracts the contents of the first operand from the contents of the second operand
with two's complement binary arithmetic and places the result into the second operand.

SUBA Subtract Address
This instruction subtracts the contents of the first operand from the contents of the second operand
with two's complement binary arithmetic and places the result into the second operand.

SUBI Subtract Immediate
This instruction subtracts the contents of the first operand from the contents of the second operand
with two's complement binary arithmetic and places the result into the second operand. The
immediate data can be up to 32 bits long, depending on the operand size.

SUBQ Subtract Quick
This instruction subtracts the contents of the first operand from the contents of the second operand
with two's complement binary arithmetic and places the result into the second operand. The
immediate data can be the integers 1 through 8.

SUBX Subtract with Extend
This instruction subtracts the contents of the first operand and the contents of the X bit from the
contents of the second operand with two's complement binary arithmetic and places the result into
the second operand.

SWAP Swap Register Halves
This instruction exchanges the contents of the high word and the contents of the low word in a data

 Yerk Assembler 52

register.

TAS Test and Set an Operand
This instruction sets the high order bit of the contents of the operand to 1. The tests for condition
codes are done before the high order bit is set. This instruction can be interrupted during is
operation. This operation is useful in synchronizing independent programs running
simultaneously.

 Yerk Assembler 53

TRAP Trap
This instruction initiates exception processing. It pushes the contents of the program counter and
then the contents of the status register onto the supervisor stack pointer. The address at the TRAP
instruction vector is then put in the program counter.

TRAPV Trap on Overflow
This instruction executes a TRAP if the V bit is on. The Trap instruction vector used is 7.

TST Test an Operand
This instruction only sets condition codes. The operand is not affected.

UNLK Unlink
This instruction copies the contents of the address register into the stack pointer and then pops the
top of the stack into the address register. This is used with LINK to handle nested subroutine calls.

 Yerk Assembler 54

Appendix
Error Messages

About this Appendix
The Yerk Assembler provides its own error handler for assembler code errors and can supply error
messages for them.

Error in loading AsmCodes 200
There was an I/O error generated by the Macintosh file Manager. The file AsmCode loads during
compilation. Check this file. Normally, the user should never change this file.

Bad operand size 202
The operand size at the end of the opcode should be ".L", ".W", or ".B".

Bad operand 203
A faulty operand was used. Some operand modes are illegal with some opcodes.

Bad immediate operand 205
A faulty immediate operand was used. It is most likely a wrong character.

Error in loading Operands 206
There was an I/O error generated by the Macintosh file Manager. The file Operands loads during
compilation. Check this file. Normally, the user should never change this file.

Operands do not match 207
For opcodes ABCD and SBCD, only two types of operands are allowed (Dx and -(Ax)). For
ABCD, SBCD, ADDX, SUBX< and CMPM both operands must be of the same mode.

Operand not an address register 208
An operand not an address register in the MOVE USP instruction. USP must be one operand and
an address operand must the the other operand.

Bad register mask 210
The register list for MOVEM is faulty

Error in first pass 211
The assembler makes two passes over the code. An error was found in the first pass so assembly

 Yerk Assembler 55

was aborted before the second pass was started.

Cannot find object or word 216
The object or word looked for by YERK[objname] could not be found in the dictionary.

Register direct operand needed 219
At least one of the two operands must be a register direct.

 Yerk Assembler 56

